Check for updates

Blood 142 (2023) 5606

The 65th ASH Annual Meeting Abstracts

ONLINE PUBLICATION ONLY

503.CLONAL HEMATOPOIESIS, AGING AND INFLAMMATION

TET2-Mediated Dysregulation of Heterochromatin in Age-Related Clonal Hematopoiesis

Tingting Hong¹, Jia Li¹, Lei Guo², Maryn Cavalier², Tianlu Wang², Shaohai Fang², Anna Guzman³, Katharina Wohlan, PhD⁴, Chiraag Kapadia, BA⁴, Yaling Yang, PhD⁵, C. Cameron Yin, MD PhD⁶, Shaoying Li, MD⁷, M. James You, MD PhD⁷, Xiaodong Cheng⁸, Yubin Zhou⁹, Margaret Goodell, PhD¹⁰, Yun Nancy Huang, PhD¹¹

- ¹Texas A&M University, Houston, TX
- ²Texas A&M University, Houston
- ³Baylor College of Medicine, Houston
- ⁴Baylor College of Medicine, Houston, TX
- ⁵The University of Texas MD Anderson Cancer Center, Houston, TX
- ⁶Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
- ⁷ Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX
- ⁸The University of Texas MD Anderson Cancer Center, Houston
- ⁹Texas A&M Health Science Center, Houston, TX
- ¹⁰Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston
- ¹¹ Institute of Bioscience and Technology, Texas A&M University, Houston, TX

Aging is one of the major negative factors of normal hematopoiesis, characterized by a decline in the self-renewal capabilities of hematopoietic stem and progenitor cells (HSPCs), alongside a myeloid lineage bias, thereby sabotaging the immune system and increasing the risk of malignant transformation. Epigenetic deregulation is a hallmark feature representative of aging and significantly contributes to age-related dysfunction in multiple systems. DNA methylation drifting is commonly observed during aging, especially within the partially methylated domains (PMDs). PMDs are intriguing heterochromatin regions featured by their late-replicating, lamina-associated, and B-compartment localized properties in HiC analysis. While heterochromatin is generally considered devoid of genes, it nonetheless plays a pivotal role in maintaining genomic stability. However, the link between age-related DNA methylation loss in PMDs and heterochromatin dysfunction remains elusive. In this study, we juxtapose the influence of aging on both wild-type (WT) and Tet2 knockout (KO) HSPCs. Tet2 depletion was found to counteract the functional deterioration typically associated with aging by preserving robust self-renewal and repopulation capacities in aging HSPCs. This resistance to functional decay may account for the age-related clonal hematopoiesis observed in Tet2KO HSPCs. At a molecular level, we identified distinct epigenetic regulatory mechanisms mediated by Dnmt3a and Tet2 at heterochromatin. These mechanisms are associated with alterations in 3D genome architecture during HSPC aging. Age-related dysregulation of heterochromatin leads to the upregulation of endogenous retroviruses (ERVs), which subsequently activate intracellular innate immune response and contribute to the functional decline of aging HSPCs. The application of reverse transcriptase inhibitors was shown to suppress ERV production and interferon-stimulated genes (ISGs) expression, thereby ameliorating age-related defects in aged HSPCs. Our findings provide compelling evidence supporting the intricate interplay between DNMT and TET in regulating DNA (de)methylation equilibrium in heterochromatin and euchromatin during stem cell aging. Moreover, our study offers critical insights into the mechanisms underlying age-related heterochromatin dysfunction, which contributes to the functional deterioration of HSPCs during aging.

Disclosures No relevant conflicts of interest to declare.

https://doi.org/10.1182/blood-2023-178792